Messier 82

Messier 82
Beautiful Hubble shot of a starburst galaxy, M82

Tuesday, December 16, 2008

Steven Chu formally appointed to head Department of Energy

Nobel-prize-winning physicist Steven Chu was formally appointed today to head President-Elect Obama's Department of Energy. This is excellent news on the climate front. While I have to admit I haven't been entirely enthralled with the Pres. Elect's Cabinet picks so far, none of them have been truly terrible (we dodged the Larry Summers bullet) and I think this one choice makes up for the all-around blandness of many of the others.

If you're not familiar with Chu's stances on energy and climate, a few choice quotes are compiled here. Some of the best:

"Climate change, in particular, poses global risks and challenges that are perhaps unprecedented in their magnitude, complexity, and difficulty... aggressive support of energy science and technology, coupled with incentives that accelerate the concurrent development and deployment of innovative solutions, can transform the entire landscape of energy demand and supply."
"Regulation stimulates technology."

"Working on applied things doesn't destroy a kernel of genius -- it focuses the mind."

Chu exemplifies the "competence" that Obama said he was looking for in members of his administration. He's brilliant, capable, proven, and as far as I can tell completely without conflicts of interest. I look forward to a sensible, pro-science Department of Energy.

Read more!

Serious Security Flaw in Internet Explorer

Not that I have terribly many readers, but if anyone using IE happens to stumble across this post, you should immediately and without hesitation obtain another browser. It's probably a good idea under any circumstances, but a really terrible security flaw was recently discovered that could compromise your passwords and possibly allow other parties to "take control of your computer."

Good browsers include:

  • Firefox (Windows, Mac, Linux; vast number of languages available, excellent adblocking add-on, high compatibility with sites designed for IE; open source)
  • Safari (Windows, Mac; simple, lightweight, fast, made by Apple)
  • Opera (Windows, Mac OSX, multiple Linux versions, Solaris, QNX, OS/2, FreeBSD, BeOS; highly customizable; proprietary)
  • Chrome (Windows XP SP2 and Vista only; extremely minimalist, lightweight, made by Google; based on open source Chromium project)

You can also check out the Comparison of web browsers entry on Wikipedia. Most any browser other than IE and AOL will do fine.

If you use IE on a work computer and do not have software installation privileges, you can use OffByOne, which has a horrible GUI but can run from a floppy, CD, or thumb drive without installation. However, you'll want to alert your network administrator to the problem with IE; perhaps you could gently encourage him or her to install a less vulnerable browser for your workplace.

If you believe your information may already have been compromised, now would probably be a good time to change your passwords. I'm afraid I can't give any advice on the vague threat of a remote user taking control of your computer; personally, I would back up everything and re-format my hard drive.

This would also probably be a good place to recommend some safe browsing habits. Don't use IE, don't click on ads, and avoid all sites that offer illegal downloads, hacks, cracks, pirated software, nudity, gambling, or other activities that attract shady people in real life. If you must use torrents or peer-to-peer software, do it in Linux. I recommend Ubuntu.

Above all else, do not under any circumstances trust virus scanners or spyware detection programs to keep you safe. They will not. They will merely lull you into a false sense of security while evil little digital critters infest your system. The dirtiest systems I have ever come in contact with all had Norton or McAfee installed, updated, and running their "active protection" memory-hogging placebo programs. While I'm sure the big-name virus protection programs do something and I have occasionally known them to detect actual viruses and malware, they cannot and will not protect against irresponsible and dangerous Internet behavior. Again, if you must indulge in risky activities, install Linux.

Read more!

Thursday, December 4, 2008

Teaching Women Science

In my last entry, I touched on a rather difficult topic: how best to improve outcomes for women in college-level physical science courses. I don't think there are any simple answers to that question. Certainly the research being done on the topic has noble goals and the people working on it should be commended; they've done great work in finding ways to improve all students' learning, including women's. Nonetheless, I think the question itself is ill-formed. Before you read on, allow me to warn you that I have not done any research on the subject and am not in any way qualified to make authoritative statements about 50% of the human population of the planet; however, if you are interested in a 100% pure-opinion discussion of female students from the perspective of a female physical science student, please continue.

There is a reasonably large amount of relatively convincing evidence, as far as evidence in the social sciences goes, that when taken as large groups women and men are more alike than different. There do, of course, exist real differences. However, it is highly questionable whether generalized differences between large populations can be applied to tiny, self-selected subsets thereof. A difference between the populations of all males and all females which is statistically significant at the population level may not, and likely does not, have any predictive value for a sample of size 30 or 40, especially when that sample is self-selected for attributes that may very well correlate with the trait in question.

Therefore, I would urge anyone who is involved in teaching or curriculum development for college-level science courses to be very cautious with any statement of the form "Women are X" or even "Most women are X" or "Most women are more X than most men." It may be true. It may even be an accurate description of your wife, mother, daughter, self, or one or more memorable students. But there is no reason to believe that it will be true of any individual student and very little reason to expect it to be true of your students in general. The sizes of the differences between women and men in large-scale studies are tiny, and the individual differences among both men and women are far, far larger. Generalized ideas about men and women will not be helpful when working with individuals and small groups.

That is not to say that these generalized studies of gender differences are not relevant or useful. Certainly they can tell us some important things; the cohort studies in particular are interesting, as they help illuminate some mysterious elements of gender differences, telling us when - and occasionally why - girls diverge from boys in various aspects of psychology. However, to use a physical science analogy, studying overall gender differences in a population is like studying climate: you can make some useful predictions, but they only make sense on a large scale. A climate model can't tell me anything about the weather in my town tomorrow, in my county next week, or even in my state next month, and it will be shaky about next year - but it should be pretty good for my region over the next decade.

Keeping that in mind, I do have some constructive suggestions that I believe can have a positive effect on outcomes for traditionally-underperforming groups in physical science courses, including women and to some extent cultural minority groups.

1. Do not assume that your students know anything.

1a. Any required formal academic background for the class or major, including high school mathematics and science education, should be documented clearly in the course description; outlines of the content that should have been covered in high school classes should be freely available from the department. Prerequisites, including required high school preparation, should be enforced. Placement tests are not a bad idea - they have worked quite well for math departments.

1b. The expected informal/non-academic backgrounds for students entering your course/degree program should also be stated explicitly. This requires a certain amount of introspection; it is difficult to construct an explicit outline of the sorts of informal science and engineering experiences you expect your students to have come in contact with over the course of their lives. However, it will benefit both you and your students to make the effort. If you have a habit of using airplanes and bouncing balls as examples in your mechanics class, your students should know some basic ideas about airplanes and have played with a Superball at least a few times. If you can get together with other faculty members teaching introductory courses, you may even be able to put together a one- or two-credit preparatory course, or perhaps an optional seminar to parallel the introductory sequence, which focuses on these sorts of informal experiences with the physical world - building model airplanes, going to air shows, building or repairing simple electronics, stargazing, dissecting a telescope to see how it works. As a group, your female students are less likely to have had these experiences than your male students (although still more likely than the general population, since your class is self-selected for physical science interest) and are thus at a disadvantage in conceptual understanding.

2. Ensure that your students have a mix of both collaborative and non-collaborative out-of-class assignments and that not all collaborative assignments are done in exactly the same groups. Some students tend to dominate collaborative work, and others may be too timid to speak up or unaware of other students' subtle dominance (this may or may not break down along gender lines, and whether it does or not is completely unimportant). On the other hand, students often can genuinely learn from each other in collaborative assignments. If you encourage students to work together on homework, give a few low-stakes take-home tests or other independent assignments throughout the term to challenge your students and help them evaluate their own independent ability to solve problems. If you assign lab groups or project groups, ensure that you vary their composition. If you allow students to select their own groups, watch for subtle signs of problems (if a student's labs and homework show an excellent understanding of material but he/she appears lost on tests, that's a warning sign that he/she is relying too much on his/her group and should probably try working alone or with different people; the student may not realize this on his/her own, and it only takes a few seconds to write a quick note on a test or have a word with him/her after class).

3. Teach in a style with which you are comfortable. If you try new pedagogical techniques and discover that they take time away from presenting needed material or that they feel ridiculous, stop. The vast majority of your class will benefit most from you teaching in a way such that you feel comfortable and can muster as much enthusiasm as humanly possible for your subject. The fact that a study shows a technique to be effective does not mean that it will mesh well with your personality.

4. Try to avoid stereotyping and deal with your students as individuals. The young black woman in your class may be a future physics major who will exceed all your expectations and need a greater challenge, and the glasses-wearing kid who looks just like a younger version of you may be struggling desperately to pass the calculus-based physics class he selected because it would good on his law school application. Both will need support to reach their goals, but the support required will be of vastly different types and cannot be discerned from their gender or physical appearance.

5. Try to use inclusive examples of real-world applications of your physical science concepts. One excellent example that was used by my current physics professor was the application of rotational motion concepts to figure skaters. Most modern physics textbooks have an excellent selection of problems; take a look at your assignments and try to include a variety of problem types, making sure that not all of them involve guns, baseballs, slingshots, and rockets.

6. For those instructing physical science classes with students who will probably go on to take standardized tests in the field: Work with your department to arrange some sort of optional course or seminar that teaches standardized test-taking explicitly. Encourage your female students to take it. Many instructors include some multiple-choice questions as part of their regular tests, which is good, but one generalization that has proven true and significant among female physical science majors is that we tend to do worse on standardized tests than our male peers; evidently we are not absorbing the implicit teaching as currently implemented. Test-taking is a skill that can be taught, and your female students will go on to be more successful if they learn it.

Overall, I think most professors do an excellent job. As I noted in my previous post, the amount that a college professor can do about the "gender gap" is somewhat limited; students, both male and female, who come into a class with less will leave with less. But there are some few things you can do to help even the playing field for all of them.

Read more!